PROCESS DESIGN PRACTICES PUMPS AND COMPRESSORS

PAGE: 10-25 BY: CK DATE: DEC 08

4. Example 1 - Vessel Elevation and Pump NPSH (continue)

- Vapor pressure credit, $P_{vessel} P_{sat} = 0$ psi (as blanketed light hydrocarbon)
- Margin = 2 ft or 10%, assume 2 ft for first iteration
- Vessel Elevation (from grade to bottom tangent)

NPSHA
$$\geq$$
 NPSHR + Margin
 $H_{vessel} \geq$ NPSHR + Margin $-H_{min \, level} + H_{pump \, elev} + \frac{2.31 \Delta P_{pipe}}{SG_{flowing}} - \frac{2.31(P_{vessel} - P_{sat})}{SG_{flowing}}$

$$= 15.7 + 2 - 0 + 2.5 + \frac{2.31 \times 0.51}{0.7074} - 0$$

$$= 21.9 \, \text{ft} \, (6.68 \, \text{m})$$

$$= 22.5 \, \text{ft} \, \text{rounded up}$$

4. Example 2 - Feed Pump Motor

- Determine feed pump motor size and full load current.
- Pump efficiency

Pump efficiency = From vendor pump curves, or estimate as shown below
$$N_S = \frac{N.Q^{1/2}}{(H)^{3/4}}$$
 =
$$\frac{3550 \times 492.6^{1/2}}{639.4^{3/4}}$$
 = 620

Pump efficiency $\eta_{pump} \simeq 0.64$ from graph

• Pump motor size

$$\begin{array}{lll} \text{Brake Power (HP)} & = & (1 + \text{Loss}_{gear}) \times \frac{\text{Flow (USgpm)} \times \Delta \text{P (psi)}}{1714 \times \eta_{pump}} \\ & = & (1 + 0) \times \frac{492.6 \times 195.8}{1714 \times 0.64} \\ & = & 88 \text{ Hp} \\ \text{Motor size} & = & 1.1 \times 88 \\ & = & 97 \text{ Hp} \\ & = & 100 \text{ Hp (75 kW) next std motor} \end{array}$$

• Full load current (assuming 460 Volt, 3 phase)

$$I = \frac{1000 \times \text{Brake Power (kW)}}{\sqrt{3}.V.\eta_{motor}.PF}$$

$$= \frac{1000 \times 75}{\sqrt{3} \times 460 \times 0.944 \times 0.86}$$

$$= 116 \text{ Amps}$$